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We study numerically the nature of the diffusion process on a honeycomb and 
a quasi-lattice, where a point particle, moving along the bonds of the lattice, 
scatters from randomly placed scatterers on the lattice sites according to strictly 
deterministic rules. For the honeycomb lattice fully occupied by fixed rotators 
two (symmetric) isolated critical points appear to be present, with the same 
hyperscaling relation as for the square and the triangular lattices. No such 
points appear to exist for the quasi-lattice. A comprehensive comparison is 
made with the behavior on the previously studied square and triangular lattices. 
A great variety of diffusive behavior is found, ranging from propagation, super- 
diffusion, normal, quasi-normal, and anomalous, to absence of diffusion. The 
influence of the scattering rules as well as of the lattice structure on the diffusive 
behavior of a point particle moving on the all lattices studied so far is 
summarized. 

KEY WORDS: Diffusion; Lorentz lattice gas; cellular automata; honeycomb 
lattice; quasi-lattice; square lattice; triangular lattice. 

1. I N T R O D U C T I O N  

In a n u m b e r  o f  paper s  we have  s tudied  numer ica l ly  the diffusion 

in L o r e n t z  lat t ice gas ce l lu lar  a u t o m a t a  ( L L G C A )  for a var ie ty  o f  str ict ly 

de te rmin i s t i c  sca t te r ing  rules tl-7) (for reviews see refs. 1, 4, and  6). In  par -  
t icular ,  new types  o f  diffusion were  found  on  the square  and  t r i angu la r  

lat t ices/1)  In  o rde r  to see to w h a t  ex ten t  the  n a t u r e  o f  the diffusion process  
depends  on  the  type  o f  latt ice,  we repor t  here  results  for the  h o n e y c o m b  

and  quasi-latti~ces. A l t h o u g h  s o m e  p re l imina ry  inves t iga t ions  were  also 

m a d e  on  the r a n d o m  latt ice,  they will  n o t  be cons ide red  here  since they  

were  no t  e l abora t e  e n o u g h  to be  used for  compar i son ,  t2) The  r a n d o m  
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lattice will be discussed in a later publication. ~8) Since not all lattices 
considered in this paper are regular lattices, the results obtained allow us 
also a comparison of the diffusive behavior on a lattice in its dependence 
on the lattice structure as well as on the scattering rules. 

In LLGCA a point particle moves along the bonds of a lattice whose 
sites are randomly occupied by stationary (in position) scatterers, which 
scatter the particle according to deterministic rules. We have studied two 
models for the scatterers, with about the simplest nontrivial scattering rules 
one can think of---either with right and left mirrors or with right and left 
ro ta tors--and considered two cases for each model: the scatterers do or 
do not change in character at collision, respectively. In the first case we 
consider fixed scatterers, i.e., stationary both in position and character 
(discussed in ref. 1), and in the second case we consider flipping scatterers, 
i.e., stationary in position, but changing from right to left and vice versa 
after a collision. 

In the case of fixed scatterers one can consider one particle or many 
particles moving simultaneously but independently of each other through 
the scatterers. For flipping scatterers, however, the motion of more than 
one particle through the scatterers differs qualitatively from that of one 
single particle, since the flipping of the scatterers introduces (indirect) inter- 
actions between the particles as well as the scatterers. We confine ourselves 
here to the motion of a single particle. 

Since straight lines do not pass through any lattice site on the 
honeycomb lattice and pass through some but not all lattice sites on the 
quasi-lattice, only the case of a honeycomb lattice and a quasi-lattice fully 
occupied by scatterers, i.e., with concentration of scatterers C =  1, has 
been considered, since otherwise a mixture of two models with different 
scattering rules would have to be introduced. 

The results of the investigations reported in this paper, which were 
carried out to over a million or more time steps, can be summarized as 
follows. 

1. As on the square (for the fixed-rotator model) and the triangular 
(for both the fixed-rotator and the fixed-mirror models) lattices, there 
appear to exist critical points for the fixed-rotator model on the honeycomb 
lattice at which the diffusive behavior is anomalous and the trajectories 
obey a hyperscaling relation, while there is an absence of diffusion--to 
which we will refer as no-diffusion--for all other concentrations. There is 
no-diffusion for any concentration of left or right fixed rotators on the 
quasi-lattice. 

2. There is no-diffusion for flipping scatterers (mirrors or rotators) 
on both the honeycomb and the quasi-lattices. 
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3. A more  detailed summary and comparison of the results for all 
lattices studied so far is given in Section 4. 

The organization of this paper is as follows. In Section 2, we study the 
honeycomb lattice for the two models mentioned above, by specifying the 
equations of mot ion for the moving particle. The Boltzmann approxima- 
tion to the diffusion coefficient is given, the computer  simulation method is 
described, and the results of the simulations for both  fixed and flipping 
scatterers are discussed. Section 3 discusses how to construct a Fibonacci 
quasi-lattice as well as the equations of motion for a particle moving on 
this lattice. The Boltzmann approximation is given, and the computer  
simulations as well as their results are discussed. In Section 4 we give a 
summary and a comparison with previous work. 

2. H O N E Y C O M B  LATTICE 

2.1. Equat ions  of M o t i o n  

The honeycomb lattice, shown in Fig. 1, has two kinds of  sites which, 
after a rotat ion over n, transform into each other (Fig. 2a) and play an 
identical role in the diffusion process. The scattering rules for the mirror  
and the rota tor  models are shown in Figs. 2b and 2c. 2 They lead to the 
following equations of mot ion for a particle for both fixed and flipping 
rotators: 

nl(r  + el,  t + 1) = n2(r, t) mR(r, t) + n6(r, t) mL(r, t) 

n i ( r + e  i, t +  1 ) =  ni+l(r ,  t) mR(r, t) + n i _ l ( r ,  t) mL(r, t) 

( i = 2 ,  3, 4, 5) 

//6(r-t- e6, t-t- 1) =n l ( r ,  t)mR(r,  t) +ns( r ,  t )mL(r,  t) 

(2.1) 

while for both fixed and flipping mirrors, one obtains 

nl(r  + el ,  t + 1 ) = n_,(r, t) mR(r, t) + n6(r, t) mL(r, t) 

ni(r + e/, t +  1) =n i+ l ( r ,  t) mR(r, t )+n i+ l ( r ,  t) mL(r, t) 

ni(r + el, t + 1 ) _ ni_ l(r, t) mL(r, t) + ni+ l(r, t) mR(r, t) 

n6(r d- e6, t 4- 1 ) = nl(r,  t) mL(r, t) + ns(r, t) mR(r, t) 

(i = 2, 4) 
(2.2) 

( i = 3 , 5 )  

2 We remark that for the fully occupied triangular lattice, if the moving particle turns _+ n/3 
upon collision with a scatterer, the particle moves on the honeycomb lattice considered 
hereJ 2) 



470 Wang and Cohen 

Fig. 1. Part of a honeycomb lattice. 

Here, the e~ are the unit vectors along the six velocity directions i = 1,..., 6 
(see Fig. 2); n~(r, t) = 1 or 0 ( i =  1 ..... 6) i f a  particle is or is not  at the lattice 
site r at time t, respectively; ma.L(r,  t ) =  1 or 0 if a right (left) ro ta tor  
(in the ro ta tor  model)  or a right (left) mir ror  (in the mir ror  model)  is or  
is not  at the lattice site r at t ime t, respectively, mR(r, t) or  mL(r, t) are 
independent of t for fixed scatterers, while they depend on t for flipping 
scatterers. 

(a )  

4 , (  ~1 

(b )  

\ _i 
1 "'\ 

/ \ 
right rotator left rotator 

(c) 

right mirror left mirror 

Fig. 2. (a) The six-velocity directions on the honeycomb lattice; after rotation over n, lattice 
site I transforms into lattice site II and vice versa; (b) examples of rotator and (c )of  mirror 
scatterers, respectively. 
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2 .2 .  B o l t z m a n n  A p p r o x i m a t i o n  

The Boltzmann approximation to Eqs.(2.1)-(2.2) is obtained by 
averaging both sides of the equations over all possible random configura- 
tions of the scatterer and the particle and ignoring any correlations 
between scatterer occupation and particle velocity at each lattice site. This 
leads for all cases, i.e., for fixed and flipping mirrors or rotators, to an 
equation of the form 

6 
f~(t+ 1)=f , . ( t )+  ~ To.fj(t) (i=1,.. . ,6) (2.3) 

j = l  

where f~(t) is the probability to find a particle with the velocity direction 
along e,. at time t and T o. are the elements of the collision matrix ~P, given 
by 

l 
- 1 C R 0 0 0 C L \ 

/ 

CR -- 1 CL 0 0 0 

~mi . . . .  = 0 C L -- 1 C R 0 0 

0 0 CR - 1 CL 0 
0 0 0 CL --1 CR 

CL 0 0 0 CR -- 1 

for the mirror case and 

~ro,~,o~= 

(il oR000c / 
C L --  1 C R 0 0 

CL -- 1 CR 0 
0 C L -- 1 C R 

0 0 1 

\ CR 0 0 0 CL 

for the rotator case, where CL,  R = < mL, R( r, l) >,  the concentration of left 
(right) scatterers on the lattice, respectively. 

Using the formula of Ernst and Binder, 191 we have 

DB = ~bB -- �88 (2.4) 

with 

1 1 Iv , )  r (2.5) CB=~(vll 1-~(1 +:P) 
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and (v~l the normalized 1-component of the velocity of the particle in the 
ei basis: 

& 1 1,) 
(v'1=/3 1'2' 2' l , -g ,g (2.6) 

For the matrix ~mi .... , the six eigenvalues are 

2,=0, 2 2 = - 2 ,  2_~.s=- l+w/-F ,  24.6=--1--V/~ (2.7) 

with six corresponding orthonormal eigenvectors: 

1 
(2~1 = 7 ( 1 ,  1, 1, 1, 1, 1) 

1 
(221 = 7 ( - 1 ,  1, - 1 ,  l, - 1 ,  1) 

1 (2CR--CL 2CL--CR 1 1 ~)  
( 2 3 1 = 7 \  2 x / ~  ,1, ' 2' 2 x / ~  2 x / ~ '  

1 ['Ck--_2C R CR--2CL 1 1 ~) 
( / ] . 4 = 7 \  2X/@ ,1, ' 2' 2,/5 2,/5' 

1 
(2sl = CL 0, 2' 

' 2 ,,/@' 2 ~ / ~ '  

( C L , C R , 1 C R - C L 

(2.8) 

where F= C [ -  CLCR + CR. Using the projection operator y~6=, [2,)(Ael 
in (2.5), one obtains 

1 mirror ~B = (2.9) 
4 C L  C R 

while, similarly, for rotators one finds 

rotator - -  (2.10) 
~ a  - -  1 + 3 ( C L _ _  CR)2  

For the case of C L = CR = 1/2, one has then 

D a = 3/4 

for both fixed and flipping mirrors as well as rotators. 

(2.11) 
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2 .3 .  C o m p u t e r  S i m u l a t i o n s  

All the computer simulations were carried out on Silicon Graphics 
Indigo (SGI) with 32MB memory, SUN Spare IPC with 24MB memory, 
and VAX 3100 with 32MB memory. A virtual lattice of 90,000 x 90,000 
sites was used. This lattice was conceptually divided into 300 x 300 blocks 
of 300 x 300 sites each. Two different arrays were used: one to record the 
position of a block, the other to record the position of the particle in the 
block. Actual memory was not assigned to a block (i.e., using "malloc" in 
C language) until the particle entered it. A flag is used to mark whether a 
block has been visited by the moving particle or not: if the block was not 
visited, i.e., the flag is 0, we assign memory to and put scatterers randomly 
on this block; otherwise, i.e., if the flag is 1, we continue to use the old con- 
figuration of scatterers that was on the block before. After the particle 
finished moving at the cutoff time step, we clear the memory and reset the 
flag for each block to 0. 

The advantage of this scheme (SJ is that only a small fraction of the 
memory for a 90,000 x 90,000 array is actually used, since we do not have 
to reserve memory for those areas that are never visited by a particle. 

Another advantage of this memory allocation procedure appears when 
resetting the lattice to the blank condition, which must be done after each 
trajectory is completed. For a large array this operation itself would take 
a significant amount of time and would be required for each particle, even 
for very small closed orbits. In the present method, only the blocks that 
have been entered by the particle need to be reset when the trajectory is 
completed (i.e., using "free" in C language), significantly reducing the 
average time required for this operation. 

About 30,000 independent particles, initially placed randomly on the 
lattice, were studied. In the case of flipping scatterers one particle was 
studied at a time. The calculations were done up to 220-2 26 time steps. The 
statistical errors were determined by doing the calculations in two steps: 
first an average was made over all 10,000 particles, with a different random 
configuration of the scatterers for each particle, then further averages were 
computed over typically three runs, involving three samples of 10,000 par- 
ticles for each. The standard deviations of the mean are plotted as the error 
bars of the data in the figures. If the error bar does not appear, the error 
bar is inside the symbol. 

2.3.1.  Fixed Scatterers.  As on the square and triangular lattices, 
the diffusion is non-Gaussian, since there are closed orbits on the 
honeycomb lattice for both the mirror and the rotator models. 

a. C ,  = CR = I / 2 .  In this case the two models behave identically, 
since they can be mapped into each other in a similar way as on the square 
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Fig. 3. (a)  Diffusion coefficient D as a func t ion  of  the t ime t on  a log~0-1og]o scale for  the 

f ixed- ro ta to r  mode l  on  the h o n e y c o m b  latt ice for  C L = C R = 0.5; (b)  c o r r e s p o n d i n g  rad ia l  dis- 

t r ibu t ion  funct ion  P(r, t) as a funct ion  o f  d i s tance  r f rom the or ig in  a t  t = 2 ]l ( ~ ) ,  t = 2 2z ( + ), 
a n d  t = 2 2'1 ( 1--I ), respectively.  

lattice.(10) There is no-diffusion (class IV), i.e., for increasing t the diffusion 
coefficient D(t) goes to zero (see Fig. 3a), which means that the mean 
square displacement A(t) is bounded, i.e., there are no extended closed 
orbits; consequently, the distribution function /5(r, t) does not correspond 
to that of a Gaussian diffusion process, but exhibits a sharp peak near the 
origin at r,,ax "~ 1-2, and its shape does not appear to change any more 
after about 2 2] time steps (Fig. 3b). Since the behavior of the two models 
is the same, we show that for the rotator model only. 

b. C L ~ C R ( C L ' I I - C R  = 1). As on the fully occupied square lattice, 
the rotator model on the honeycomb lattice behaves very differently 
from the mirror model. For, while the mirror model exhibits no-diffusion 
(class IV) at least for the concentrations 0.35~<CL.R~<0.65 which we 
investigated (Fig. 4a), the rotator model appears to possess two symmetric 
isolated critical points at CL,.R,  = 0.541, CR~,.~, = 0.459, where the diffusive 
behavior is anomalous (class II). This differs from the results reported by 
Catalfi etaL, (~l) who found a critical line from about CL=0.541 and 
CR = 0.459 to CL = 0.459 and CR = 0.541, of which only the endpoints are 
consistent with our results. For all other concentrations, away from these 
critical concentrations, the diffusive behavior is no-diffusion (class IV) (see 
Figs. 4b and 5). This behavior can also be seen in the difference in the 
number of open orbits as a function of time for CL = CL~, and CL :~ CLc, 
(and similarly for CRc,) (see Fig. 6a). For the rotator model in Fig. 6a, the 
number of open orbits No(t) has a maximum value at CL~, (or CR,) and 
approaches a behavior as t-1/7, (]) i.e., we determined the size distribution 
exponent of open orbits characterized by r = 15/7 from No(t) ~ t 2-  T = t-1/7. 
At the same time, we determined independently the fractal dimension 
dr=7~4 from the product of probability of an open orbit Po(t) and the 
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Fig. 4. (a) Diffusion coefficient D as a function of the t ime t on a log~o-log~o scale for the 
f ixed-mirror model  on the honeycomb lattice for CL = CR = 0.5 ( � 9  C L = 0.55, C R = 0.45 
( + ), C L = 0.6, C R = 0.4 ( 1"7 ), and  C L = 0.65, CR = 0.35 ( x ); (b) Diffusion coefficient D as a 
function of the t ime t on a log~o-logto scale for the f ixed-rotator model  on the honeycomb 

lattice for CL=CR=0.5 (<~), CL----0.541 , C R = 0 . 4 5 9  (D) ,  CL=0 .55 ,  CR=0 .45  ( + ) ,  and 
CL = 0.6, CR = 0.4( x ); cri t ical  concent ra t ions  are pr in ted in boldface. 

mean square displacement of a particle on an open orbit Ao(t) divided by 
t, i.e., from Po(t)Ao(t)/t~t-~Pt2/dl/t, which appears to approach a con- 
stant (Fig. 6c). This suggests that the hyperscaling relation ~ - 1  =2~dr is 
valid at the critical points. (~) At all other concentrations, the orbits appear 
to close the quicker, the further away CL(CR) is from CLc,(CR~). Although 
we expect that at CL, (or CR~r) all orbits will close eventually, it may take 
an infinite number of time steps to do so, i.e., there exist extended closed 
orbits. (~) We should point out that it appears to take much longer for the 
diffusion process on the honeycomb lattice at a critical point to reach its 
asymptotic behavior than on the square and especially the triangular lat- 
tices. To what extent this is related to the small coordination number (3) 
of the honeycomb lattice is unclear. We are therefore not as certain about 
the existence of the two critical points and the hyperscaling relation for the 
honeycomb lattice as we are for the other two lattices. In order to settle 
this point unambiguously we would have to extend our calculations far 
beyond our present maximum of 2 26 time steps, where each data point in 
Figs. 4a, 6a, and 6c typically already takes a few weeks on our SGI. 

Fig. 5. 

%. o.o %= o.~1 %= 1.o 
; class IV ,class IV, class IV ; 

C~= 1.0 CI~ 0.541 CR= 0.0 

class II 

Phase d iagram for  the f i xed- ro ta to r  model  on the fu l ly  occupied honeycomb lattice. 
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Fig. 6. N u m b e r  of  open orbits out  of 10,000 trajectories on the honeycomb lattice as a func- 
t ion of t on a logl0-Iog 2 scale for (a)  fixed-rotator model:  C L = C R = 0 . 5  ( ~ ) ,  CL=0.53,  
CR=0.47 ( + ) ,  CL=0.541 , CR=0,459 (El), CL=0.55,  CR=0.45  (x}, CL=0.57  , CR=0.43 
( .6),  and CL=0.6 ,  CR=0.4  (*); (b) fixed mirror-model: C L = C R = 0 . 5  (O) ,  CL=0.55,  
C a = 0.45 ( + ), CL = 0.6, CR = 0.4 ( []  }, CL = 0.65, CR = 0.35 ( x ); (c) contribution of diffusion 
coefficient fi'om open orbits P,,(t) Ao(t)/t as a function of time t on a l o g l o - l o g  2 scale for fixed- 
rotator  model  on the honeycomb lattice for CL = 0.541, C R = 0.459 ( ~ ), CL = 0.53, CR = 0.47 
( + ), and CL = 0.55, CR = 0.45 ( []  ). 

For the mirror model, no such critical points (Fig. 6b) are found. In 
fact, the number of open orbits decreases gradually with increasing values 
of CL when CL varies from 0 to 0.5, where it is a minimum, and similarly 
for 0 < CR ~< 0.5. This is because it is more difficult in the mirror model for 
a moving particle to make a closed orbit when there are more mirrors of  
one type than the other, due to an increased possibility of  zigzag motion 
(Fig. 2c in ref. 1 ). 

2.3.2. Flipping Scatterers 

a. CL = CR = 7 /2 .  As on the fully occupied square and triangular 
lattices, the diffusive behavior of the mirror and the rotator models on the 
fully occupied honeycomb lattice is identical. This can be argued in the 
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same way as for fixed scatterers at CL = CR = 1/2. We find that  the diffu- 
sion coefficient goes to zero and that  the radial  d is t r ibut ion  function P(r, t) 
does not  appea r  to change any longer after a number  of  t ime steps tcr ~ 2 H 
(Figs. 7a, 7b; in Fig. 7b, since the behavior  of the two models  is the same, 
we show that  for the ro ta to r  model  only),  while the ma x imum of  P(r, t) 
appears  to remain  fixed at  a distance r = rma x ~ 10 lattice distances from the 
origin. We classify this diffusive behavior  still as class IV, since it is similar 
to that  found for fixed scatterers in Section 2.3.1, except that  rma x is much 
larger now. We observe that  after about  2 ]5 time steps vir tual ly all part icles 
are in closed orbi ts  (Fig. 8), suggesting that  all t rajectories  will eventual ly 
become closed orbits. The smallest  closed orbi t  can be considered to con- 
sist of  two " refec tors"  (i.e., the closed orbi t  consists of two par ts  connected 
by a single line, where each of  these two parts  is called a "reflector") 3 with 
a per iod of  92 time steps, where the part icle  suffers 92 collisions on 34 lat- 
tice sites (Fig. 9). This closed orbi t  is much larger than  the cor responding  
one of 6 latt ice sites for fixed scatterers,  which is the origin of  the larger 
value of  rmax for the flipping scat terer  model.  

b. CL ~ CR( CL + CR = 1). In this case, the diffusive behavior  of bo th  
the ro t a to r  and  the mi r ro r  model  is class IV, but  it is not  entirely identical  
for the two models.  

F o r  the flipping ro t a to r  model ,  the diffusion coefficient takes a shorter  
t ime for CL :/: CR to vanish than for CL = CR (Fig. 7a). This is so because 
for CL ~ CR, when one type of ro ta to r  is more  numerous  than the other, 
the closed orbi ts  are less extended than  when CL = CR (Figs. 10a and 10b), 
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0,0r 
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0.010 
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0.005 i 

0 

l a  
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Fig. 7. (a) Diffusion coefficient D as a function of the time t on a log~o-log]o scale for the 
flipping-rotator and mirror models on the honeycomb lattice for CL = CR = 0.5 for flipping 
rotator (O) and flipping mirror (+), CL=0.8 and C R =0.2 for flipping rotator (I-q) and 
flipping mirror (x); (b) corresponding P(r, t) as a function of r for the flipping-rotator model 
on the honeycomb lattice for CL=CR=0.5 at t=215 (~), / = 2  t7 (+ ) ,  and t=219 (I-I), 
respectively. 

3 Bunimovich and Troubetzkoy use a more general definition of a "reflector". t j21 

8 2 2 / 8 1 / I - 2 - 3 1  
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Fig. 8. Fraction of closed orbits on the honeycomb lattice for the flipping-rotator model ( O ) 
and flipping-mirror model (+)  (indistinguishable) for CL = C•=0.5, as a function of log 2 t. 

since for CL r CR the tendency for the moving  part icle  to bend in one 
direction and then return to its original  pos i t ion  is larger than when equal  
numbers  of  left and right ro ta tors  are present. 

We remark  that  the closed orbi ts  found in our  s imulat ions for 
C L  ~t~ C R  appea r  to be of  a different type than those observed for CL = CR, 
viz. wi thout  "reflectors." This difference is surely only apparen t ly  so, since 
for all C L and CR r 0 closed orbi ts  with or  wi thout  "reflectors" will occur. 
However,  their  frequency of  occurrence will depend very much on CL/CR. 
Thus, while for C L = C R those with "reflectors" are the only ones seen in 
the simulations,  for CL :/: CR other  types of  orbi ts  appea r  as well (Fig. 10a). 
Similarly, on the square latt ice for flipping ro ta tors ,  "reflectors" are not  
necessary for closed orbi ts  either (Figs. 10c and 10d). However ,  on the 

I I I I I I I I I 1 

A ]3 
I I I I I P I I I I 

Fig. 9. An example of the smallest closed orbit for the flipping-rotator model on the 
honeycomb lattice with period of 92 time steps on 34 lattice sites with two "reflectors" A and 
B. Up-triangles stand for right rotators and down-triangles for left rotators, respectively. 
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Fig. 10. Typical examples of closed orbits for the flipping-rotator model on different lattices. 
Up-triangles stand for right rotators, down-triangles for left rotators and squares for empty 
sites, respectively. (a) Period of 2209 time steps on 256 lattice sites without "reflectors" and 
empty sites for CL=0.95,  CR=0.05 on the honeycomb lattice; (b) period of 852 time steps 
on 182 lattice sites with two "reflectors" (A and B) but without empty sites for CL = CR= 0.5 
on the honeycomb lattice; it has a shorter period, but is more extended than that in (a) for 
CL :# CR; (c) period of 2697 time steps on 232 lattice sites without "reflectors" but with empty 
sites for CL = 0.95, CR = 0.01 on the square lattice; (d) period of 337 time steps on 61 lattice 
sites with two "reflectors" (A and B) and empty sites for CL=0.95,  Crt=0.01 on the square 
lattice; (e) the smallest closed orbit of period of 18 time steps on 7 lattice sites without 
"reflectors" but with one empty site on the triangular lattice; (f) period of 36 time steps on 
13 lattice sites without "reflectors" but with empty sites for C <  t.0 on the triangular lattice. 



480 Wang and Cohen 

triangular lattice, for both flipping rotators and mirrors, closed orbits never 
contain "reflectors" (as defined above) (Figs. 10e and 10f). This can be 
understood as follows: for a "reflector" to exist, it is necessary that the 
moving particle goes through at least one bond at least once in opposite 
directions, i.e., the moving particle must turn over an angle of an odd 
number times of n, consistent with the scattering rules. However, the latter 
is not possible for the triangular lattice because an angle of an odd number 
times of n cannot be produced by any combination of the possible 
scattering angles _ 2zc/3 and 0. 

For the flipping-mirror model, the diffusion coefficient goes to zero for 
both CL :~ CR and CL = CR- However, for this model it takes a longer time 
for the diffusion coefficient to vanish when CL :~ CR than for CL = CR (see 
Fig. 7a), since there exists now a tendency for the particle to propagate 
(zigzag motion) when the particle hits a region with more right (left) 
mirrors than left (right) mirrors. 

3. Q U A S I - L A T T I C E  

3.1. I n t roduc t ion  

The quasi-lattice we studied was a Fibonacci lattice rather than a 
Penrose lattice, since the former gives a higher density of vertices (for a 
given lattice size). It is shown in Fig. 11. It was constructed in the following 
wayJ TM First a "star" of five two-dimensional vectors sl, s2, s3, s4, s5 is 
drawn (Fig. 12a). This "star" has pentagonal orientational symmetry, i.e., 
the angle between each pair of adjacent vectors is 2n/5. Next a grid, i.e., a 

Fig. 11. Part of a Fibonacci quasi-lattice. 
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( a )  

S l  

s2 L s, 
S3 ~ ~ S, 

(b) 

4 3 

8 9 

_\ (c) 

right rotator left rotator 

Fig. 12. (a) Five-"star" with pentagonal orientation symmetry; (b) the ten-velocity directions 
on the Fibonacci quasi-lattice; (c) rotator scatterers. 

set of, in principle, infinite, but here in fact 73, quasi-periodically spaced 
parallel lines are introduced perpendicular to each star vector si (i = 1 ..... 5) 
with spacings 

x . ; = r , , ~ . s ; = T ; [ n + 0 c i + - - [ .  , Pi ] (3.1) 

Here x. , i  is the distance along the direction s; ( i = 1  ..... 5) between the 
origin and the nth parallel line; r,,. i is a point on the n-th parallel line per- 
pendicular to sg ( i =  1 ..... 5); kfJ is the floor function, denoting the integer 
part  of J~ and n = 1, 2 ..... N (here N is 73). These five grids compose the 
grid-space. Furthermore,  Ti, ei, Pi, ~;, and fli are constant parameters,  of 
which the o-~ must be irrational real numbers in order  to get nonperiodic 
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spacings. 4 Equat ion (3.1) defines a quasi-periodic "sequence of intervals" 
such that  the intervals z lx t=x, , ,  i - x , , _  i. t between two adjacent parallel 
lines have the proper ty  

z lx t=  ~Ti if Lnla ,+  f l J - L ( n - 1 ) l a t +  f l J = O  (3.2) 
T t ( l + l / p , )  if I n / a t + f l d - L ( n - 1 ) / a t + f l l = l  

That  is, there are only two possible intervals between adjacent parallel lines 
for each grid, Tt(1 + l / a ; )  and Tt, which appear  in a quasi-periodic 
sequence, where the ratio of  the number  of  Tt(1 + l/pi) distances to the 
number  of  Tt distances equals 1/( 1 - a ; ) .  Thus,  the paramete r  at determines 
the relative frequencies of the two different spacings in the sequence and Pt 
determines the ratio of  the two spacing lengths that  occur between the lines 
in each grid. In our calculations we took  the parameters  p; = at = z = 
( v / 5 +  1)/2 ( i =  1 ..... 5), the golden mean,  and we chose T t =  0.25, 0.8, 0.25, 
0.7, 0.7, a t =  -30 .0 ,  -30 .0 ,  - 31 .0 ,  - 72 .0 ,  - 71 .0 ,  and f i t=0.7 ,  0.8, 1.1, 1.2, 
0.9, for i = I ..... 5, respectively, in order to make  five grids that  over lapped 
as much  as possible. In this way a m a x i m u m  number  density of  vertices of  
the quasi-lattice was obtained. The grid thus generated is called a 
Fibonacci  pentagrid, t~4) to which we restrict ourselves here. The effect of  a 
change in a; is simply to translate each entire grid in the direction st over 
a distance Tta;, whereas a change in fit alters the sequence of long and 
short  spacings. In each grid, each line normal  to the star vector  st is labeled 
by an integer kt which represents the location of its position along the st 
direction. The lines divide the grid space into nonintersecting open regions 
through which no lines pass (the regions can be arbitrari ly small). Each 
such region is specified (uniquely) by M (here 5) integers (k~, k2 ..... kM): if 
Xo is any point  in the region, then k t is the label of  the line normal  to st 
such that  Xo lies between the lines labeled by k i and kt + 1. Finally the 
generalized dual method I ~3) is applied to find the dual of  the pentagrid. The 
"dual" is constructed by mapping  each open region in grid space into a 
point  t = Z ~ 1  k;st, which lies in a two-dimensional  space which we shall 
call the "cell-space." The points t are the vertices of  a packing of the quasi- 
lattice by unit cells (rhombuses) .  So the dual t ransformat ion maps  a grid- 
space into a cell-space such that  open regions in grid-space are mapped  
into points in cell-space and the points in grid-space are mapped  into the 
open regions ( rhombuses)  in cell-space. This gives a tiling of the plane with 

4 For, if we choose for a i in Eq. (3.1) rational real numbers, e.g., tri = p~/q~ with both Pi and 
qi positive integers, we will get periodic spacings, x,,. g= T~ (m + ),g) and therefore a periodic 
lattice with period T~. Here m is an integer, m = 1, 2,..., LN/p~I, where each m stands for a 
set ofpj adjacent lines in the sequence of N lines, T~ = T~(pi + qi/Pi), and ),i = (ctg + LfliJ/pg)/ 
(Pi + qJPl). 
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two differently shaped rhombuses  (one is a thin rhombus  with angles 36 ~ 
144 ~ 36 ~ and 144 ~ the other is a fat rhombus  with angles 72 ~ 108 ~ 72 ~ 
and 108 ~ and produces the quasi-lattice shown in Fig. 11. The lengths of  
all bonds of the quasi-lattice are equal and are chosen to be unity. Since 
our  quasi-lattice has no translat ional  or rotat ional  symmetries,  we define 
two lattice sites as the same if one lattice site can be mapped  into the other 
by a pure translation. The Fibonacci  quasi-lattice has 658 different lattice 
sites, s If  each lattice site were to appear  on the lattice with the same prob-  
ability, i.e., 1/658, then the average coordinat ion number  would be 5.6839. 
Since in our lattice not  every lattice site appears  with the same probabili ty,  
the average coordinat ion number  is actually about  3.9887. 

3.2. Equat ions  of M o t i o n  

We restrict ourselves to the ro ta tor  model, where the particle will turn 
to its left (right) over the largest available angle between lattice bonds 
if there is a left (right) ro ta tor  (Fig. 12c). This leads to the following 
equations of mot ion  for both  fixed and flipping rotators:  

n i ( r + e i ,  t +  1) 

= [ni+ l(r, t) I i+ 1. ' ( r )  + ni+ 2(r, t) I;+2. i(r) 

+ ni+3(r, t) Ii+3"i(r) + ni+4(r, t) Ii+4"i(r)] mR(r, t) 

+ [ni+6(r,  t) I i+6'i(r)  +ni+7(r ,  t) Ii+7"i(r) +n i+s ( r ,  t) Ii+8"i(r) 

+ni+9(r ,  t ) I '+9"i (r )]  mL(r, t) ( i = 1  ..... 10; mod  10) (3.3) 

Here ei is the unit vector  defining the velocity direction i (i = 1 ..... 10) and 
ni(r, t), m R ( r  , t) ,  and m L ( r  , l )  have the same meaning as in the equations 
for the honeycomb lattice. I~J(r) is a geometric factor, which can only have 
the values 1 or  0, depending on whether  the particle can or cannot  change 
from e,. to ej, respectively, at r. In the square brackets  before mR(r, t) or 
m E ( r  , t)  in Eq. (3.3), only one I 'J(r)  is q:0, viz. the one which allows the 
particle coming in with velocity direction i to turn to the allowed direction 
j to its right or 'left,  respectively. 

5The lattice sites can differ in three ways: (a) different number of bonds to the nearest 
neighbors; (b) same number of bonds to the nearest neighbors, but different angles between 
adjacent bonds; (c) same number of bonds to the nearest neighbors and same angles 
between adjacent bonds, but different orientation of these bonds. 



484 Wang and Cohen 

3.3. Bol tzmann Approx imat ion  

A Boltzmann approximation to Eq. (3.3) is obtained by averaging 
both sides of the equation over all possible random configurations of the 
scatterers and the particle and ignoring any correlations between scatterer 
occupation and particle velocity at each lattice site. One obtains then 

10 
f , - ( t+ l ) = f , . ( t ) +  ~ T~f : ( t )  (i=1,..., 10) (3.4) 

j= l  

where f~(t) is the probability to find a particle with the velocity direction 
along e~ at time t. The T o. are the elements of a 10 x 10 collision matrix 7 ~, 
with off-diagonal matrix elements proportional to CL or Ca. For CL = 
CR = 1/2, to which we restrict ourselves here, ~ reads 

-2  (I  2j ) 
(112 ) - 2  
(I  13) ( I  23) 
(1 TM ) (124 ) 

~=~ (1~)  ( I  2~) 
2 0 (12~) 

(I '7) 0 
<llS) (I  2s ) 
(119 ) (129 ) 

(I  I1~ (121~ ) 

(131 ) (I  41 ) (151 ) 0 (171) (181) (191) 
(132 ) (I  42 ) (I  52 ) (162 ) 0 (I  82 ) (192 ) 

--2 (143 ) (153 ) (I  63 ) (173) 0 (193 ) 
(i34) --2 (154) (164) (174) (i84) 0 
(iXS) (/aS> --2 (I6S) (175> (iS5) (195> 
(136 ) (146) (I  56 ) --2 (I  76 ) (186 ) (I  96 ) 
(137) (147) (157) (167) --2 ( I  sT) (197) 

0 (148) (I  58) (168) (178) -2  (198) 
(139) 0 (159) (169) (179) (189) --2 
(1310) (1410) 0 (1610) (1710) (1 st~ (19t0) 

(I  I~ ) 
(I  *o'-) 
(I  1~ 
(/104) 

o 
(i  m6) 
(1107 ) 
(I  I~ 
( I  I09 ) 

- 2  

3.5) 

Here < I ' ~ >  is the fraction of all lattice sites for which IU(r) is not zero. 
The values of < I ~  for the Fibonacci lattice are given in the appendix. 
Using the method of Ernst and Binder <9~ as above [cf. Eqs. (2.4)-(2.5)] 
with the Tq of Eq, (3.5), we can obtain the diffusion coefficient in the 
Boltzmann approximation. Since the diffusion tensor is not isotropic, we 
use for the Boltzmann diffusion coefficient D s =  l _~(D.,.,.. s + Dy:,, s). Using 
that 

1 rc 2rr 
(v., I = - - =  (1, cos - ,  cos 2n n - c o s  - f ,  - c o s  - 1, 

, / 5 \  5 T '  

rc 2n 2~z zt~ 
- cos  - cos  T '  cos  T '  cos  
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and 

1 / 2n n n 2n 
< vy I = 0, cos T '  cos 7' cos 7' cos T '  0, 

2n 
--COS ~3, --COS - - C O S -  

- cos T '  7' 

which are the x and y components of the velocity of the particle in the e; 
( i=  1 ..... 10) basis, respectively [cf. Eq. (2.6)] leads then with Eqs. (2.4) and 
(2.5) to a value Ds "~ 0.165. This value can be compared with the value 
DB-----0.1661 +0.0005 as determined by computer simulation for a proba- 
bilistic model with a scattering rule of equal probability for the particle to 
scatter over the largest angle to its left or to its right. 

3.4 .  C o m p u t e r  S i m u l a t i o n s  

A unit cell of 22,350 lattice sites and Ziff et al.'s ~5) method described 
above for the honeycomb lattice were used. Since it is not possible here to 
impose strictly periodic boundary conditions, we chose the following quasi- 
periodic boundary conditions: each time that a particle leaves the unit cell 
along a bond with a given velocity at one side, it reappears on the opposite 
side with the same velocity direction along the bond closest to where it 
would have reappeared for periodic boundary conditions. About 30,000 
independent particles were used and the calculations were pursued up to 
220 time steps. For flipping scatterers one particle was studied at a time. As 
explained for the honeycomb lattice, the standard deviations of the mean 
are plotted as the error bars of the data in the figures. 

3.4.1. Fixed  S c a t t e r e r s .  In this case, we found no-diffusion 
(class IV) everywhere, since all orbits clearly seemed to be closed after a 
finite number of time steps. Therefore, unlike for the honeycomb lattice, 
there appear to be no critical points. As a consequence, the mean square 
displacement is bounded, as can be seen from both the diffusion coefficient 
and the number of closed orbits (Figs. 13a and 13b). We also checked the 
effect of boundary conditions on the computer simulation results and found 
virtually no difference in the diffusive behavior between a basic block with 
22,350 or 10,940 sites (cf. Fig. 13c). 

3.4.2. Flil~ping S c a t t e r e r s .  As on the honeycomb lattice, the 
diffusion coefficient goes to zero, while the distribution function P(r, t) 
exhibits a sharp maximum at r = rmax ~ 10 lattice sites and does not appear 
to change any longer after 21' time steps (Figs. 14a and 14b). It seems that 
all orbits will eventually be closed. Because of the irregularity of the lattice 
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Fig. 13. (a) Diffusion coefficient D as a function of the time t on a loglo-logto scale for the 
fixed-rotator model on a Fibonacci quasi-lattice for C L = C a = 0.5 ( ~ ), CL = 0.57, C• = 0.43 
( + ) ,  and C L = 0 5 5 ,  CR=0.45  (I--1); (b) as in (a), the number  of closed orbits for CL = 
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Ca = 0.43 ( + ), and CL = 0.58, C a = 0.42 ( [] ); (c) as in (a) for C L = Ca = 0.5 on a basic block 
with 22,350 sites ( � 9  and a basic block with 10,940 sites ( + )  (indistinguishable). 
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Fig. 14. (a) Diffusion coefficient D as a function of the time t on a Iog~o-logto scale for the 
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Fig. 15. (a) An example of closed orbits for the flipping-rotator model on the Fibonacci 
quasi-lattice with period of 1129 time steps on 274 lattice sites with two "reflectors" A and B; 
(b) an example of a closed orbit with period of 5997 time steps on 348 lattice sites without 
"reflectors." Up-triangles stand for the right rotators and down-triangles for the left rotators. 

w e  h a v e  n o t  b e e n  a b l e  t o  i d e n t i f y  y e t  t h e  s m a l l e s t  c l o s e d  o r b i t ;  F i g s .  15a  

a n d  15b  g i v e  t w o  e x a m p l e s  o f  c l o s e d  o r b i t s .  

4.  D I S C U S S I O N  

1. W e  s u m m a r i z e  t h e  d i f f u s i v e  b e h a v i o r  fo r  t h e  f ixed  a n d  f l i p p i n g  

s c a t t e r e r  m o d e l s  fo r  C L  o r  CR :/: 0 o n  al l  f o u r  l a t t i c e s  i n v e s t i g a t e d  h e r e  a s  

we l l  a s  i n  ref. 16 in  T a b l e s  I a n d  I I ,  r e s p e c t i v e l y .  

Table I. Fixed Scatterers 

Lattice Rotator Mirror 

Square 0 < C ~< 1 --* class IV 0 < C < 1 -+ superdiffusion 
Except on two critical lines ~ ~ ~ --, class II C = 1 --+ class II 

Triangular 0 < C ~< I --+ class IV 
Except on one critical line 

CL = CR ~a) -'* class II 

0 < C <~ I --, class IV 
Except on one critical line 

C L = CR O) --+ class II 

Honeycomb C = 1 ~ class IV C = 1 --* class IV 
Except for two critical points ---* class II 

Quasi C = 1 ---, class IV 

6 For the diffusive behavior for C =  CL (or C =  CR), i.e., a lattice covered by only one type 
of scatterer, see ref. 6. 
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Table Ih Flipping Scatterers 

Lattice Rotator Mirror 

Square 0 < C< 1 ~ class IV 0 < C~< l --* normal (class I) 
C= 1 --* normal (class I) 

Triangular 0 < C < 1 --* quasi-normal 0 < C < 1 --* quasi-normal 
C = I ~ propagation C = 1 --* propagation 

Honeycomb C = 1 ---, class IV C = 1 --* class IV 

Quasi C = I --* class IV 

The two tables reflect how the diffusion process differs on the fully 
occupied honeycomb and quasi- lat t ices from those studied before and 
enable us to get a sense of the influence of  the lattice s tructure as well as 
of the scattering rules on the diffusion process of  a part icle  on these lattices. 
We have the following comments.  

(a) In  Table  I crit ical lines or  points  for the f ixed-rota tor  model  
occur for all lattices except the quasi-lattice.  F o r  the mir ror  model  on the 
square lattice, the crit ical behavior  occurs for all concent ra t ions  a long the 
critical line C =  1. In Table  II, a phase t ransi t ion occurs at C =  1 for the 
ro ta to r  model  on the square latt ice as well as for bo th  the ro ta to r  and 
mir ror  models  on the t r iangular  lattice. 

One can interpret  the results in Tables  I and II  in terms of  dynamica l  
analogs of  phase transit ions,  critical points,  and critical lines. A t ransi t ion 
from class IV to class II  exhibits some analogy to a second-order  phase 
transi t ion,  in that  the behavior  implies the appearance  of  extended closed 
orbi ts  (cf. long-range corre la t ions  at  crit ical points  or  on crit ical lines) 
when before t rapping,  i.e., only short  closed orbits ,  occurred (of. short-  
range correlat ions away from critical points  or  lines). On  the other  hand,  
the less subtle t ransi t ions from class II  to superdiffusion or  class IV to 
normal  diffusion (class I) or  from quas!-normal  diffusion to p ropaga t ion  
bear  more  resemblance to a f irst-order phase transi t ion.  It is not  clear 
whether  this ana logy can be pushed beyond this descriptive stage. 

(b) The t r iangular  lattice is an exception in that  the ro ta to r  and 
mir ror  models  a lways behave the same for any  concent ra t ion  of  scatterers 
for bo th  fixed ~1) and flipping scatterers for the same reason as argued in 
ref. 1 for fixed scatterers. 
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Fig. 16. (a) Fraction of closed orbits for the flipping-rotator model on the triangular lattice 
as a function of log, t for different concentrations of rotators for C L = CR; from top to bot- 
tom: C= 0.85, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 (the last two are too small to see), respectively; 
(b) P(r, t) as a function of r for the flipping-rotator model (circles) and flipping-mirror model 
(diamonds) on the triangular lattice for C=0.85 and CL= CR at t=2  ~3. Smooth curves 
(indistinguishable) represent the corresponding Gaussian distribution (note the few points 
representing closed orbits near the origin). 

(c) In  Tables  I and II,  the diffusive behavior  of the moving part icle 
covers a wide var ie ty  of  different cases: p ropaga t ion ,  superdiffusion, nor-  
mal,  quas i -normal ,  anomalous ,  and  no-diffusion. 

2. We note  that  the quas i -normal  behavior  for 0 < C < 1 in the tri- 
angular  lat t ice listed in Table  II  differs from the normal  behavior  ment ioned 
in ref. 2 because the finite p robab i l i ty  for closed orbi ts  to occur was o;r 
looked in this paper.  7 This makes  the diffusion process strictly speaking non-  
Gaussian.  (~~ However ,  the fraction of  closed orbi ts  is so small (Fig. 16a) 
that  for all pract ical  purposes  the diffusion can be considered Gauss ian;  as 
a consequence we call it quas i -normal  (Fig. 16b). We conjecture that  a 
s imilar  s i tuat ion may  obta in  in d =  3 for the simple cubic lattice, for 
instance, where closed orbi ts  will occur  relatively frequently for short  t imes 
when the part icle  hovers  near  the origin, but  where, with increasing time, 
re turn to the origin, once the part icle  is away,  will become increasingly 
difficult. 

3. We note  that  the mi r ro r  model  for fixed scatterers is t ime-reversal  
invar iant  on the square and the t r iangular  lattices but  not  on the 
honeycomb lattice. This is due to the small  scattering angle (n/3) of  the 
part icle  on the honeycomb latt ice as compared  to those on the square and 
the t r iangular  lattices, where they are n/2 and 2n/3, respectively. However ,  
the f l ipping-mirror  model  on the honeycomb latt ice is t ime-reversal  
invariant ,  while this is not  so on the other  two lattices. 

7This was noticed by Bunimovich and Troubetzkoy (t~ and independently by one of us 
( F.W., unpublished). 
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4. As to the nature of  closed orbits for flipping scatterers, empty  sites 
are necessary on the square and tr iangular lattices, but  not  on the honey- 
comb and quasi-lattices (C = 1). "Reflectors" occur, but are not necessary 
for closed orbits on the square, honeycomb,  and quasi-lattices, i.e., closed 
orbits may  or may  not include "reflectors," while on the tr iangular  lattice, 
there are no "reflectors" (Figs. 10a-10f). 

5. Even when all orbits close, there are a number  of  different cases to 
distinguish how this closing occurs. 

(i) Many  trajectories close very near the origin (where P has a 
m a x i m u m  at r = rmax ~ 1--2), but most  trajectories are extended and close 
gradually when t ~  oo, as shown in the slow approach  of P(r, t) to its 
asymptot ic  shape (Figs. 2a and 7a in ref. I). This obtains in the case of  
anomalous  diffusion (class II)  for fixed scatterers. Then the decrease in the 
number  of  open orbits (characterized by r) and the mean square displace- 
ment  (characterized by df) are connected by the hyperscaling relation 
r -- 1 = 2~dr. 

(ii) Almost  all orbits close very near  the origin at r = rmax ~ 1--2 and 
P(r, t) is virtually s tat ionary for t> tcr  (Figs. 3b and l i b  in ref. 1). This 
obtains in the case of  no-diffusion (class IV) for fixed scatterers. All orbits 
close after a finite number  of time steps. 

(iii) Almost all orbits close near  the origin at r ~ rm~x ~ 10 and P(r, t) 
is virtually s tat ionary for t > t c r ~ 2  ]~ (Figs. 7b and 14b). This obtains in 
the case of no-diffusion (class IV) for flipping scatterers. All orbits close 
after a finite number  of  time steps. 

(iv) Only a small fraction of trajectories close near  the origin, yet 
P(r, t) has a m a x i m u m  at rmax "" 1--2 for all sufficiently large t. The particle 
appears  to move overwhelmingly in unbounded trajectories (Fig. 16b). This 
obtains in the case of  quasi-normal  diffusion for both  flipping rota tors  and 
mirrors  on the tr iangular lattice for C < 1. 

(v) All trajectories will close eventually with only a few closed orbits 
near  the origin, while the overwhelming majori ty  carry particles whose 
mean square displacement grows faster than t (Fig. 7b in ref. 1). This 
obtains in the case of  superdiffusion for 0 < C <  1 for the fixed-mirror 
model  on the square lattice. The probabil i ty to find a closed orbit  decreases 
as ~ 1/ln t. ~11 

6. Although the theorems of Bunimovich and Troube tzkoy  rigorously 
establish some of the results found in these compute r  simulations on the 
square and the tr iangular lattices and we were able to present physical 
arguments  for a number  of the observed behaviors,  clearly a deeper under- 
standing of the diffusion process of  a particle on a lattice in its dependence 
on lattice structure and scattering rules is lacking. 
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(133 ) 
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(137 ) 

(138 ) 

= ( 1 6 6 )  = 0  

= ( 176 ) = 6 . 7 3 3 8 4 3 6 1 9 8 0 4 2 8 2 5 E - -  03 

= ( 1 8 6 )  = 2 . 9 6 4 8 2 8 9 8 9 4 3 9 0 0 7 8 E -  02 

= ( i 9 6 )  = 3 . 1 9 2 5 2 0 1 0 4 6 4 1 0 2 3 2 E - - 0 2  

= ( 1 io 6 ) = 8.1387462455188451 E - -  03 

= 0  
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= ( 136 ) = 3 . 0 9 0 7 8 5 7 7 6 5 7 2 0 3 7 6 E - -  02 

= ( 1 4 6 )  = 2 . 8 6 7 9 3 9 1 5 3 1 8 2 8 3 1 1 E - - 0 2  
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= ( 167 )  = 6 . 4 4 3 1 7 4 1 1 1 0 3 5 7 5 2 4 E - - 0 3  

= ( i 7 7 )  = 0  

= ( 1 8 7 )  = 2 . 0 3 9 5 3 1 0 5 3 1 9 2 5 2 0 1 E - 0 2  

= ( l  97 )  = 3 . 4 2 0 2 1 1 2 1 9 8 4 3 0 3 8 5 E - - 0 2  
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= 0  
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= ( i  57 )  = 1 . 2 1 5 9 6 7 4 4 5 0 1 5 0 1 7 9 E - 0 2  

= ( 168 ) = 2.8727836449956399E- 02 

= ( 1 7 8 )  = 2 . 1 4 6 1 0 9 8 7 3 0 7 4 3 1 4 5 E - 0 2  

= ( I  88) =0 

= ( 198 ) = 6 . 2 0 0 9 4 9 5 2 0 3 9 5 3 1 0 6 E -  02 

= ( i i o  s ) = 3 . 6 0 4 3 0 1 9 0 8 7 2 9 7 7 4 3 E -  02 

= ( I 18)  = 3 . 0 9 0 7 8 5 7 7 6 5 7 2 0 3 7 6 E -  02 

= ( 128 )  = 2 . 5 3 3 6 6 9 2 1 8 0 9 9 0 2 1 4 E -  02 

= 0  
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= 6 . 2 3 9 7 0 5 4 5 4 8 9 7 7 8 1 2 E - 0 2  

= 3 . 4 8 3 1 8 9 6 1 3 4 0 9 5 5 3 4 E - 0 2  

= 2 . 9 9 3 8 9 5 9 4 0 3 1 5 8 6 0 9 E - 0 2  

= 3 . 4 6 8 6 5 6 1 3 7 9 7 1 1 2 6 8 E - - 0 2  

= 5 . 7 6 0 1 0 0 7 6 5 4 2 9 7 0 6 5 E - 0 2  

( I 9 9 )  = 0  

( I 1 0 9 )  = 2 . 1 1 2 1 9 8 4 3 0 3 8 4 6 5 2 6 E - - 0 2  

( 1 1 9 )  = 2 . 8 6 7 9 3 9 1 5 3 1 8 2 8 3 1 1 E - 0 2  

( i  29)  = 3 . 5 2 6 7 9 0 0 3 9 7 2 4 8 3 2 8 E -  02 

= ( 139 ) = 6 . 2 3 9 7 0 5 4 5 4 8 9 7 7 8 1 2 E -  02 

= 0  

= ( 1 5 9 )  = 2 .4658463327196977E--02  

= (161o)  = 8 .1871911636469334E--03  

= ( 1 7 1 o )  = 1 . 3 6 6 1 4 6 6 9 1 2 1 2 0 9 1 8 E - - 0 2  

= ( 181o ) = 3 .5703904660401124E--  02 

= ( i  91o)  = 2 . 1 0 7 3 5 3 9 3 8 5 7 1 8 4 3 8 E - - 0 2  

= ( 1 1 ~ 1 7 6  = 0  

= (11 IO) = 6 .2978393566514873E--03  

= (121o)  = 1 .2159674450150179E--02  

= ( i  31o) = 3 . 4 8 3 1 8 9 6 1 3 4 0 9 5 5 3 4 E - - 0 2  

= ( 1 4 1 o )  = 2 . 4 6 5 8 4 6 3 3 2 7 1 9 6 9 7 7 E - - 0 2  

= 0  

= 0  

= (171  ) = 7 . 7 5 1 1 8 6 9 0 0 4 9 4 1 3 8 2 E - - 0 3  

= ( 181 ) = 3 . 1 1 5 0 0 8 2 3 5 6 3 6 0 8 1 8 E -  02 

= ( 1 9 1 )  = 2 . 9 1 1 5 3 9 5 7 9 4 9 8 1 1 0 7 E - - 0 2  

= ( 1 1 ~  = 6 .6853987016761942E--03  

= ( P I ) = O  
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= < i  s 2) = 1.3661466912120918E-02 

= < i  e 3) = 3 .1150082356360818E-02 

= < 173 > = 2.3883344637147563E--02 

= 0  

---- < i  9 3 )  ----- 6.3317507993411491E--02 

= < IlO 3) = 3.4735006297839357E--02 

= < I 13 > = 2.9648289894390078E- 02 

= < 12 x) = 2 .0395310531925201E-02 

- - - -<133)  = 0  

= < 14 3 ) = 5 . 7 6 0 1 0 0 7 6 5 4 2 9 7 0 6 5 E  - 02  

= < i 53) = 3.5703904660401124E--02 

= ( / 6 4 )  = 2.9115395794981107E-02 

= < 17 4 ) = 3.4395891870942738E - 02 

= < 184) = 6.3317507993411491E--02 

= 0  
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=(IJ~ 

= ( I  14) = 3.1925201046410232E-02 

=3.4202112198430385E-02 

= 6.2009495203953106E-02 

= 0  

=2.1073539385718438E-02 

=6.6853987016761942E--03 

= 1.1723670186997384E--02 

= 3.4735006297839357E--02 

=2.2526886929561089E--02 

= ( i  t 5) = 8.1387462455188451E-03 

= (12 s) = 1.3613021993992830E--02 
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= (155)  =0  
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